

Date Planned ://	Daily Tutorial Sheet-6	Expected Duration : 90 Min		
Actual Date of Attempt : / /	Level-2	Exact Duration :		

Actu	Jal Date	of Attempt :	_/_/_		Level	-2	Ex	act Duration	:		
76.	5 moles of SO_2 and 5 moles of O_2 are allowed to react. At equilibrium, it was found that 60% of SO_2 is used up. If the partial pressure of the equilibrium mixture is one atmosphere, the partial pressure of O_2 is:										
	(A)	0.82 atm	(B)	0.52 atm	(C)	0.21 atm	(D)	0.41 atm			
77.	At 600° C, K_p for the following reaction is 1 atm. $X(g) \rightleftharpoons Y(g) + Z(g)$ At equilibrium, 50% of $X(g)$ is dissociated. The total pressure of the equilibrium system is p atm. What is										
	the partial pressure (in atm) of $X(g)$ at equilibrium?										
	(A)	1	` ,	4	(C)	2	(D)	0.5			
78.	Consider the reaction, $NO_2 \Longrightarrow \frac{1}{2}N_2 + O_2$, K_1 ; $N_2O_4 \Longrightarrow 2NO_2$, K_2										
	Give t	Give the equilibrium constant for the formation of N ₂ O ₄ from N ₂ and O ₂ .									
	(A)	$\frac{1}{K_1^2} \times \frac{1}{K_2}$	(B)	$\frac{1}{K_1 K_2}$	(C)	$\sqrt{\frac{1}{K_1 K_2}}$	(D)	$\frac{\mathrm{K}_2}{\mathrm{K}_1}$			
79.	Equiva	Equivalent amounts of H ₂ and I ₂ are heated in a closed vessel till equilibrium is obtained. If 80% of the									
	•	gen can be con	overted to HI,	the $K_{\rm c}$ at	this tempera	ture is :			\odot		
	(A)	64	(B)	16	(C)	0.25	(D)	4			
80.	56 g of nitrogen and 8 g of hydrogen gas are heated in a closed vessel. At equilibrium 34 g of ammonia are present. The equilibrium number of moles of nitrogen, hydrogen and ammonia are respectively:										
									etively : 🕑		
	(A)	1, 2, 2	(B)	2, 2, 1	(C)	1, 1, 2	(D)	2, 1, 2			
81.	and 0 flask	.50 atm press when the dec	ure. Ammon composition	ium hydro reaction r	ogen sulphic eaches equi	containing am le decomposes librium, the t sition at this t 0.18	to yield I	$\mathrm{NH_3}$ and $\mathrm{H_2S}$ sure in the fl	gases in the		
82.	For th	For the reaction: $N_2(g) + O_2(g) \Longrightarrow 2NO(g)$, the value of K_c at 800°C is 0.1. When the equilibrium									
						the value of K	at the sa	_	ıre?		
	(A)	0.5	(B)	0.1	(C)	0.01	(D)	0.025			
83.		$3B(g) \rightleftharpoons 4$ and C are equal		concentra	ation of A is	equal to that o	of B. The e	equilibrium co	ncentrations		
	(A)	0.08	(B)	8	(C)	80	(D)	1 / 8			
84.		noles of PCl5 is een found to be				pacity. When t /dm³?	he equilib	rium is attain	ed 40 % of it		
	(A)	0.532	(B)	0.266	(C)	0.133	(D)	0.174			
85.	At 550 K, the K_c for the following reaction is $10^4\text{mol}^{-1}\text{L}$. $X(g)+Y(g)$ \Longrightarrow $Z(g)$. At equilibrium, it was										
	observ	observed that $[X] = \frac{1}{2}[Y] = \frac{1}{2}[Z]$. What is the value of $[Z]$ (in mol L^{-1}) at equilibrium?									

 2×10^{-4}

(B)

 10^{-4}

(A)

(C)

 2×10^4

(D)

 10^4